HORNSBY GIRLS HIGH SCHOOL

Mathematics Extension 2

Year 12 Higher School Certificate Trial Examination Term 3 2023

General Instructions

- Reading Time 10 minutes
- Working Time 3 hours
- Write using black pen Black pen is preferred
- NESA-approved calculators and drawing templates may be used
- A reference sheet is provided separately
- In Questions 11 16, show relevant mathematical reasoning and/or calculations
- Marks may be deducted for untidy and poorly arranged work
- Do not use correction fluid or tape
- Do not remove this paper from the examination room

Total marks - 100

Section I Pages 3-6

10 marks

Attempt Questions 1 - 10

Answer on the Objective Response Answer Sheet provided

Section II Pages 7 - 12

90 marks

Attempt Questions 11 – 16

Start each question in a new writing booklet

Write your student number on every writing booklet

Question	1-10	11	<i>12</i>	<i>13</i>	14	<i>15</i>	<i>16</i>	Total
Total								
	/10	/15	/15	/15	/15	/15	/15	/100

Section I

10 marks

Attempt Questions 1 - 10

Allow about 15 minutes for this section

Use the Objective Response answer sheet for Questions 1 - 10

- **1** The scalar product of two vectors $\underline{u} = 3\underline{i} \underline{j} 7\underline{k}$ and $\underline{v} = 2\underline{i} + 3\underline{j} + \underline{k}$ is
 - (A) 6i 3j 7k
 - (B) 5i + 2j 6k
 - (C) -4
 - (D) 22
- 2 If z=3-4i, then $\frac{1}{1-z}$ is equal to:
 - (A) $\frac{-1-2i}{10}$
 - (B) $\frac{-1+2i}{10}$
 - (C) $\frac{-1-i}{6}$
 - (D) $\frac{-1+i}{6}$
- 3 The equation of a sphere, centre (2,2,3) that touches the x-y plane only is:
 - (A) $(x-2)^2 + (y-2)^2 + (z-3)^2 = 9$
 - (B) $(x-3)^2 + (y-2)^2 + (z-2)^2 = 9$
 - (C) $(x-2)^2 + (y-2)^2 + (z-3)^2 = 6$
 - (D) $(x-2)^2 + (y-3)^2 + (z-3)^2 = 9$

4 Which of the following is equivalent to the expression $\frac{16x-43}{(x-3)(x^2-x-6)}$?

(A)
$$\frac{3}{x-3} + \frac{1}{x-6} - \frac{3}{x+1}$$

(B)
$$\frac{3}{x-3} + \frac{1}{(x-3)^2} - \frac{3}{x+2}$$

(C)
$$\frac{3}{x-3} + \frac{1}{x+3} - \frac{3}{x-2}$$

(D)
$$\frac{3}{x-3} + \frac{1}{x+2} - \frac{3}{(x+2)^2}$$

5 Which of the inequalities best represents the given region in the complex plane?

(A)
$$\{z:|z+\overline{z}|<2\}\cup\{z:|z-1|\geq 1\}$$

(B)
$$\{z: |z+\overline{z}| < 2\} \cap \{z: |z-1| \ge 1\}$$

(C)
$$\{z: |z-\overline{z}| < 2\} \cup \{z: |z-1| \ge 1\}$$

(D)
$$\{z:|z-\overline{z}|<2\}\cap\{z:|z-1|\geq 1\}$$

6 Which expression is equivalent to $\int (\ln x)^2 dx$

(A)
$$x(\ln x)^2 - 2 \int \ln x dx$$

(B)
$$(\ln x)^2 - 2 \int \ln x dx$$

(C)
$$x(\ln x)^2 - 2\int x \ln x dx$$

(D)
$$2\int \ln x dx$$

l is a line in the Argand diagram that passes through the origin and makes an angle α with the positive real axis, where $0 \le \alpha \le \frac{\pi}{2}$.

The point P represents the complex number z_1 , where $0 < \arg(z_1) < \alpha$. The point P is reflected in the line l to produce the point Q, which represents the complex number z_2 . Hence $|z_1| = |z_2|$.

The value of $arg(z_1) + arg(z_2)$ is

- (A) α
- (B) 2α
- (C) 3α
- (D) none of the above.

8 What is the converse of the following statement?

"If both m and n are divisible by d, then m-n is divisible by d."

- (A) If m-n is divisible by d, then both m and n are divisible by d.
- (B) If m-n is not divisible by d, then both m and n are not divisible by d.
- (C) If m-n is not divisible by d, then neither m nor n is not divisible by d.
- (D) If both m and n are not divisible by d, then m-n is not divisible by d.
- 9 Consider the statement:

" $\forall x \in R$, if f(x) is even, then f''(x) is also even'
Which of the following is the negation to the statement?

- (A) $\exists x \in R$, if f(x) is not even, then f''(x) is also not even
- (B) $\exists x \in R$, if f''(x) is not even, then f(x) is also not even
- (C) $\forall x \in R$, if f(x) is not even, then f''(x) is also not even
- (D) $\forall x \in R$, if f''(x) is not even, then f(x) is also not even
- 10 Which best describes the following parametric equations?

$$x = -5\cos t$$
$$y = 5\sin t$$
$$z = t$$

- (A) A spiral around the y axis moving in an anticlockwise direction.
- (B) A spiral around the y axis moving in a clockwise direction.
- (C) A spiral around the z axis moving in an anticlockwise direction.
- (D) A spiral around the z axis moving in a clockwise direction.

End of Section I

Section II

90 marks

Attempt Questions 11 – 16

Allow about 2 hours and 45 minutes for this section

Answer each question in a new writing booklet. Extra writing booklets are available.

In Questions 11 - 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 marks) Start a new writing booklet

(a) (i) Given that
$$a > 0, b > 0$$
, prove that $a + b \ge 2\sqrt{ab}$

(ii) Hence show
$$\sec^2 x \ge 2 \tan x$$

(b) (i) Express
$$z = \sqrt{2} - i\sqrt{2}$$
 in modulus-argument form.

(ii) Hence evaluate
$$z^{24}$$

(c) The point
$$P$$
 represents the complex number $-2+4i$. The point Q is in the first quadrant of the Argand diagram such that $\angle OQP = \frac{\pi}{2}$ and $|OQ| = |QP|$.

Find the complex number represented by the point Q.

(d) Find the primitive function of each of the following:

(i)
$$\int \frac{e^x}{1+e^{2x}} dx$$

(ii)
$$\int \sin^2 x \cdot \cos^3 x \ dx$$

(iii)
$$\int \frac{2x+1}{x^2+2x+2} dx$$

End of the Question 11.

Question 12 (15 marks) Start a new writing booklet

(a) (i) Show that one of the zeros of the equation $2z^3 - 5z^2 + 6z - 2 = 0$ is 1 - i.

1

(ii) Hence, or otherwise, find the other zeros over the complex field C.

2

- (b) Consider the statement 'If $5^x = 2$, $x \in R$, then x is irrational.'
 - (i) Find the converse of the above statement.

1

(ii) Prove that the above statement is true.

2

(c) Find $\int x \sin^{-1} x \ dx$

4

(d) (i) Point P divides the line segment AB internally in the ratio of m:n, prove that

2

$$p = \frac{mb + na}{m + n}$$

where $\overrightarrow{OP} = p$, $\overrightarrow{OA} = a$ and $\overrightarrow{OB} = b$.

(ii) Point *P* is the midpoint of *AB*, show that $p = \frac{a + b}{2}$.

1

(iii) Points P, Q and R are midpoints of the sides of $\triangle ACB$, where $\overrightarrow{OC} = \underline{c}$. Show that $P + q + \underline{r} = \underline{a} + \underline{b} + \underline{c}$. 2

Question 13 (15 marks) Start a new writing booklet

- (a) The line l_1 passes through the points A(4,-3,-3) and B(5,2,2).
 - (i) Find the vector equation of line l_1 .

2

(ii) The equation of line l_2 is given by $\frac{x-1}{k} = \frac{y}{-1} = \frac{z+3}{1}$

3

Find the value of k for which l_1 and l_2 intersect.

(b) Evaluate $\int_{0}^{\frac{\pi}{2}} \frac{dx}{3 - \cos x - 2\sin x}$

4

- (c) The spheres $x^2 + y^2 + z^2 = 9$ and $x^2 + (y-4)^2 + z^2 = 16$ intersect. Find
 - (i) the value of y when they intersect.

1

(ii) the equation of the circle in which they intersect, giving the coordinates of the centre and the radius.

2

(d) Use mathematical induction to prove for all integers $n \ge 2$,

3

$$\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 - \frac{1}{n}$$

You may assume $\frac{1}{(k+1)^2} - \frac{1}{k} + \frac{1}{k+1} < 0$ is true.

End of Question 13

Question 14 (15 marks) Start a new writing booklet

- Use a counter-example to show that the statement 'a quadrilateral is formed by (a) joining any four points in a plane.
 - 1

- (b) 'If $\forall x \in R$, $x^2 6x + 5$ is even, then x is odd.'
 - (i) Write down a contrapositive statement.

1

(ii) Use contraposition to prove the original conjecture.

2

(c) (i) Sketch the set of points representing the complex number z such that

$$\arg(z+2) = \frac{\pi}{4} + \arg(z-2i)$$

(ii) Find the radius and centre.

- 2
- (d) (i) If ω is a complex root of $z^3 1 = 0$ with the smallest positive argument, show that ω^2 is also a cube root of unity.
- 2

(ii) Show that $1+\omega+\omega^2=0$.

- 1
- (iii) Find all the roots in the form $e^{i\theta}$ and indicate these roots in an Argand diagram.
- 2

(iv) Show that $(1+\omega^2)^5 = -\omega^2$

2

End of Question 14

Question 15 (15 marks) Start a new writing booklet

- (a) Given $a^2 + b^2 \ge 2ab$ (Do NOT prove this)
 - (i) Prove that $x^2 + y^2 + z^2 \ge xy + yz + zx$

1

(ii) Deduce that if x + y + z = 1, then $xy + yz + zx \le \frac{1}{3}$

2

(b) Given $z = \cos \theta + i \sin \theta$, prove $z^n + \frac{1}{z^n} = 2 \cos n\theta$

2

(ii) Hence by considering the expansion $\left(z + \frac{1}{z}\right)^4$ show that

3

- $\cos^4 \theta = \frac{1}{8} \cos 4\theta + \frac{1}{2} \cos 2\theta + \frac{3}{8}$
- (iii) Hence find the primitive of $\int \cos^4 \theta \ d\theta$

1

(c) Find the shortest distance from the point $\begin{bmatrix} 3 \\ 1 \\ 2 \end{bmatrix}$ to the line $r = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} + \lambda \begin{bmatrix} 2 \\ -1 \\ 1 \end{bmatrix}$

- 3
- (d) A sequence is defined by $a_1 = 2$, $a_2 = 3$ and $a_n = 3a_{n-1} 2a_{n-2}$ for all integers $n \ge 3$ Prove by mathematical induction that $a_n = 2^{n-1} + 1$ for integers $n \ge 1$

End of Question 15

Question 16 (15 marks) Start a new writing booklet

- (a) Find the integral $\int_0^{\frac{\pi}{4}} \sec^3 x \ dx$.
- (b) Lines l_1 and l_2 are given below, relative to a fixed point O.

$$l_1: r = (11\underline{i} + 2\underline{j} + 17\underline{k}) + \lambda(-2\underline{i} + \underline{j} - p\underline{k})$$

$$l_2: r = (-5\underline{i} + 11\underline{j} + q\underline{k}) + \mu(-3\underline{i} + 2\underline{j} + 2\underline{k})$$

where λ and μ are scalar parameters.

- (i) Given that lines l_1 and l_2 are perpendicular, find the value of p.
- (ii) Given that lines l_1 and l_2 intersect perpendicularly, find the value of q.
- (iii) Hence find the point of intersection of lines l_1 and l_2 .
- (c) (i) Evaluate $\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx$
 - (ii) Show that $0 \le x^n \le x^2$, for $n \ge 2$ in the above integral.
 - (iii) Hence show that for $n \ge 2$, $\frac{1}{2} \le \int_0^{\frac{1}{2}} \frac{dx}{\sqrt{1-x^n}} \le \frac{\pi}{6}$.

End of Examination

HGHS Ext 2 2023 TRIAL HSC SOLUTIONS

Marking Guidelines:

Multiple-choice Answer key

112 macapie	CHOICE I KAID
1	C
2	A
2 3 4 5 6	A
4	В
5	D
6	A
7	В
8	A
9	A
10	D

1	y=3i i $7k$ and $y=2i+2i+k$	Correct answer:
1	u = 3i - j - 7k and $v = 2i + 3j + k$	Correct answer.
	$u \bullet y = 3(2) + (-1)(3) + (-7)(1)$	
	$\underline{u} \bullet \underline{v} = -4, \tag{C}$	
2.	$\frac{1}{1-z} = \frac{1}{1-(3-4i)}$	Correct answer:
	1-z 1-(3-4i)	
	$=\frac{1}{-2+4i}\times\frac{-2-4i}{-2-4i}$	
	$=\frac{-2-4i}{20}$	
	$=\frac{-1-2i}{10}\tag{A}$	
	10	
3.	Centre $(2, 2, 3)$ and touches the $x - y$ plane,	Correct answer:
	i.e. $z = 0$ i.e. radius is 3 units	
	$(x-2)^2 + (y-2)^2 + (z-3)^2 = 9$ (A)	
4.	16x - 43 $16x - 43$	Correct answer:
	$\frac{16x-43}{(x-3)(x^2-x-6)} = \frac{16x-43}{(x-3)(x-3)(x+2)}$	
	$=\frac{16x-43}{(x-3)^2(x+2)}$	
	$=\frac{A}{x-3}+\frac{B}{(x-3)^2}+\frac{C}{x+2}$	
	()	
	$=\frac{A(x-3)(x+2)+B(x+2)+C(x-3)^{2}}{(x-3)^{2}(x+2)}$	
	$16x-43 = A(x-3)(x+2) + B(x+2) + C(x-3)^{2}$	
	When $x = 3$, $5 = 5B$	
	B = 1	
	$x = -2, -75 = 25C$ $\therefore C = -3$	
	x = 0, -43 = -6A + 2 - 27	
	-18 = -6A	
	$\therefore A = 3$	
	$\therefore \frac{3}{x-3} + \frac{1}{(x-3)^2} - \frac{3}{x+2}$ (B)	
	$x-3(x-3)^2 x+2$	

5. $ z-1 = 1 $	Correct answer:
$\left\{z: \left z-\overline{z}\right < 2\right\} \cap \left\{z: \left z-1\right \ge 1\right\} \tag{D}$	
6. $\int (\ln x)^2 dx = uv - \int u'v dx u = (\ln x)^2 v' = 1$ $u' = \frac{2\ln x}{x} \qquad v = x$ $= x(\ln x)^2 - 2 \int \ln x dx \qquad (A)$	Correct answer:
7. Let $\arg(z_1) = \theta$ Angle between z_1 and line $l = \alpha - \theta$ $\therefore \arg(z_1) + \arg(z_2) = \theta + (\alpha + \alpha - \theta)$ $= 2\alpha$ (B)	Correct answer:
8. $P = \text{both } m \text{ and } n \text{ are divisible by } d$ $Q = m - n \text{ is divisible by } d$ $Converse: \text{ If } Q \Rightarrow P \qquad \textbf{(A)}$	Correct answer:

9.

Key words	Negation	
$\forall x \in R$,	$\exists x \in R$,	
is even	is not even	

Correct answer:

Correct answer:

 $\exists x \in R$, if f(x) is not even, then f''(x) is also not even (A)

10.

$$x = -5\cos t$$
$$y = 5\sin t$$
$$z = t$$

i.e. spiral up z – axis as t increases.

Method 1: viewing from the x - y plane

Method 2: Table of values

	t = 0	$t = \frac{\pi}{2}$	$t = \pi$
$x = -5\cos t$	x = -5	x = 0	<i>x</i> = 5
$y = 5\sin t$	y = 0	<i>y</i> = 5	y = 0
z = t	z = 0	$z = \frac{\pi}{2}$	$z = \pi$

 \therefore turning clockwise around the z axis.

QUEST	ION 11 (a)
(i)	$(\sqrt{a} - \sqrt{b})^2 \ge 0$ $a \ge 0$, $b \ge 0$ Mostly well done $a - 2\sqrt{ab} + b \ge 0$ $a = b$ Mostly well done $a + b \ge 2\sqrt{ab}$
(ii).	Sec $x = \tan^2 x + 1$ $\Rightarrow 2 \int \tan^2 x \cdot 1 (using ii)$ Mostly well done All but 2 get it
	$= 2 \tan x $ $= 2 \tan x \text{as } \tan^2 x > 0$
	(1)

QUESTION 11 (b)

(i)
$$3 = \sqrt{2} - i\sqrt{2}$$
 $|3| = \sqrt{2} + 2$ and $3 = \tan^{-1}(-\sqrt{2})$
 $= 2$
 $= \tan^{-1}(-1)$
 $= -\frac{\pi}{4}$
 $= 2 \cos(-\frac{\pi}{4})$
 $= 2 \cos(-\frac{\pi}{4})$
 $= 2 \cos(-\frac{\pi}{4})$
 $= 2 \cos(-\frac{\pi}{4})$

(ii)
$$3^{24} = 2^{24} \operatorname{cis}(-\frac{\pi}{4})^{24}$$

$$= 2^{24} \operatorname{cis}(-6\pi)$$

$$= 2^{24} (\cos 6\pi - 2\sin 6\pi)$$

$$= 2^{24} (1-0)$$

$$= 2^{24} (10777216)$$

Let
$$\overrightarrow{OQ} = a + bi$$

A lot of stelend had $\overrightarrow{OP} \perp \overrightarrow{OQ}$ where $\overrightarrow{OQ} = (-2 + 4i) - (a + bi)$

He $\overrightarrow{OQ} = (-2 + 4i) - (a + bi)$

This correction that $\overrightarrow{OQ} = (-2 + 4i) - (a + bi)$

This correction that $\overrightarrow{OQ} = (-2 + 4i) - (a + bi)$

A lot of students had OP LOO when

= (b-4) + (-2-a)i = (b

QUESTION 11 (d)

(i)
$$\int \frac{e^{x}}{1+e^{2x}} dx = \int \frac{1}{1+u^{2}} du \quad \text{let } u = e^{x} dx$$

$$= \tan^{2} u + c$$

$$= \tan^{2} e^{x} + c$$
(2)

generally well done All but 2 got it

QUESTION 11 (d)

(ii)
$$\int \sin^2 x \cos^3 x \, dx = \int \sin^2 x \cos^2 x \cos x \, dx$$
 generally well do

$$= \int \sin^2 x \left(1 - \sin^2 x\right) \cos x \, dx$$
 All but 3 god

$$= \int \cos x \sin^2 x - \cos x \sin^4 x \, dx$$
 the correct of th

generally well done

OUESTION 11 (d)

(iii)
$$\int \frac{dx+1}{x^2+dx+2} = \int \frac{2x+2-1}{x^2+2x+2} dx$$

$$= \int \frac{2x+2}{x^2+2x+2} dx - \int \frac{1}{x^2+2x+2} dx$$

$$= \ln(x^2+2x+2) - \int \frac{1}{(x+1)^2+1} dx$$

$$= \ln(x^2+2x+2) - \tan^{-1}(x+1) + C$$
[3)

OUESTION 12 (a)

 $P(z) = 2z^3 - 5z^2 + 6z - 2$ $P(1-i) = 2(1-i)^3 - 5(1-i)^2 + 6(1-i) - 2$ $P(1-i) = 2(1-3i+3i^2-i^3)-5(1-2i+i^2)+6-6i-2$ =2(1-3i-3+i)-5(1-2i-1)+4-6i=2(-2-2i)-5(-2i)+4-6i= -4 - 4i + 10i + 4 - 6i(I mark)

Expansion error (-i) :1 Poor working out: ## ## 1 No conqueron: 1

Hence 1-i is a root of $P(z) = 2z^3 - 5z^2 + 6z - 2$. Since 1-i is a root, then its conjugate 1+i is also a root

(ii) i.e. (1-i)+(1+i)=2

$$(1-i)(1+i) = 2$$

= 0

 $\therefore \left[z - (1-i)\right] \left[z - (1+i)\right] = z^2 - 2z + 2 \text{ is a factor}$

$$\frac{2z-1}{z^2-2z+2)2z^3-5z^2+6z-2}$$

$$-(2z^3-4z^2+4z)$$

$$-z^2+2z-2$$

$$-(-z^2+2z-2)$$

 $-\underline{\left(-z^2+2z-2\right)}$

Hence the other roots are 1 + i and $\frac{1}{2} + 0i$ over \mathbb{C} .

\$ AE: 1 Had X+B++=== 11 Did not explain why 1-i is Had 1-i as he other noot: A for the other voots: Hit Ill Fachised P(2) or annot 2/

DHK: 1

QUESTION 12 (b)

(i)	'If $5^x = 2$, $x \in R$, then x is irrational.'
	where $P = 5^x = 2$, $x \in R$ and $Q = x$ is irrational
	The converse statement (i.e. $Q \Rightarrow P$) is
	'If x is irrational, $x \in R$, then $5^x = 2$.'

(ii) Using contradiction, 'If $5^x = 2$, $x \in R$, then x is rational.'

If $5^x = 2$, $x \in R$, where x is rational i.e. $x = \frac{p}{x}$ where

 $p, q \in \mathbb{Z}^+$ and $\frac{p}{q}$ in simplest form.

$$5^{\frac{p}{q}} = 2$$

$$\left(5^{\frac{p}{q}}\right)^q = \left(2\right)^q$$

$$5^p = 2^q$$

Since LHS = 5^p

 $=5\times5\times5\times...\times5$ where there is no factor that is divisible by 2. of 5x5x5x... is odd

and RHS = 2^q

 $=2\times2\times2\times...\times2$ where there is no factor that is 2×2×2× ... 11

Therefore the proposal of $x = \frac{p}{q}$ is rational, is a contradiction therefore the original statement is true.

By Contrapositive | $x = \frac{p}{q}$ is rational, is a contradiction and concluded by contradiction and

QUESTION 12 (c)

L	ION	12 (c)				
	Let	$\int x s$	$in^{-1}x$	dx		
		=uv-	$-\int u'v$	dx where	$u=\sin^{-1}x$	and $v'=x$
					$u' = \frac{1}{\sqrt{1 - x^2}}$	$v = \frac{x^2}{2}$
		$=\frac{x^2}{}$	$\frac{\ln^{-1}x}{2}$	$-\frac{1}{2} \int \frac{x^2}{\sqrt{1-x}}$	$\frac{1}{2}dx$	Let $x = \sin \theta$
						$\frac{dx}{d\theta} = \cos\theta$
						$dx = \cos\theta \ d\theta$
		$=\frac{x^2 \sin^2 x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{2} \int \frac{\sin^2}{\sqrt{1-\sin^2}} dx$	$\frac{\theta}{\ln^2 \theta} \cos \theta$	$d\theta$
		$=\frac{x^2 \sin^2 x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{2} \int \frac{\sin^2 \theta}{\sqrt{\cos^2 \theta}}$	$\frac{\theta}{\theta} \cos\theta d\theta$	
		$=\frac{x^2 \sin^2 x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{2} \int \frac{\sin^2 \theta}{ \cos \theta }$	$\cos\theta d\theta$	
		$=\frac{x^2 \sin x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{2}\int \sin^2\theta$	$d\theta$	
		$=\frac{x^2 \operatorname{si}}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{2}\int \frac{1}{2}(1-c)$	$\cos 2\theta \big) d\theta$	
		$=\frac{x^2 \sin^2 x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{4}\int 1-\cos$	$2\theta d\theta$	
		$=\frac{x^2 \sin^2 x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{4} \left[\theta + \frac{\sin 2\theta}{2} \right]$	$\left[\frac{2\theta}{2}\right] + C$	
		$=\frac{x^2 \sin^2 x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{4} \left[\theta + \frac{2\sin \theta}{2} \right]$	$\left[\frac{1}{2} \theta \cos \theta\right] +$	С
		$=\frac{x^2 \sin x}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{4} [\theta + \sin \theta]$	$\theta\cos\theta$]+ C	
		$=\frac{x^2 \operatorname{si}}{x^2}$	$\frac{n^{-1}x}{2}$	$\frac{1}{4} \left[\sin^{-1} x \right]$	$+x\sqrt{1-x^2}$	+C
	-					

DNK what to do with July du : 111 Had cos 0 = 1 1 DNK: SJI-x2 dx : IIII cardens transcription: 1
Had Juiv! dn: 1

QUESTION 12 (c) continues

$$\frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{2} \int \cos^2 \theta \, d\theta$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{2} \int \frac{1}{2} (1 + \cos 2\theta) \, d\theta$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{4} \int (1 + \cos 2\theta) \, d\theta$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{4} \left[\theta + \frac{\sin 2\theta}{2} \right] + C$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{4} \left[\sin^{-1} x + \frac{2 \sin \theta \cos \theta}{2} \right] + C$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{4} \left[\sin^{-1} x + \sin \theta \cos \theta \right] + C$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{4} \left[\sin^{-1} x + x \sqrt{1 - x^2} \right] + C$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{2} \sin^{-1} x + \frac{1}{4} \sin^{-1} x + \frac{x \sqrt{1 - x^2}}{4} + C$$

$$= \frac{x^2 \sin^{-1} x}{2} - \frac{1}{4} \sin^{-1} x + \frac{x \sqrt{1 - x^2}}{4} + C$$

QUESTION 12 (d)

(i) Point P divides the line segment AB internally in the ratio of $m \cdot n$

Point P divides the line segment AB internally the ratio of m:n.

$$\overrightarrow{AB} = \overrightarrow{AP} + \overrightarrow{PB}$$
 where $\overrightarrow{AP} : \overrightarrow{PB} = m : n$

$$\frac{\overrightarrow{AP}}{\overrightarrow{PB}} = \frac{m}{n}$$

$$\therefore n\overrightarrow{AP} = m\overrightarrow{PB}$$

$$n(\overrightarrow{OP} - \overrightarrow{OA}) = m(\overrightarrow{OB} - \overrightarrow{OP})$$

$$n(\underbrace{p} - a) = m(\underbrace{b} - p)$$

$$n\underbrace{p} - na = mb - mp$$

$$n\underbrace{p} + mp = mb + na$$

$$(n + m)\underbrace{p} = mb + na$$

$$\therefore \underbrace{p} = \frac{mb + na}{m + n}$$

DN Ka: 11

Envisaly brain technique:

Had AP = = (6-2): 1

Mostly and well using

but did not know the how to relate to OA and OB a well or OP: Itt

(ii) Point P is the midpoint of AB, i.e.
$$m: n=1:1$$

$$\therefore m=n=1$$

$$\therefore \underline{p} = \frac{(1)\underline{b} + (1)\underline{a}}{(1) + (1)}$$

$$\therefore \underline{p} = \frac{\underline{b} + \underline{a}}{2}$$

Inadequate onplantin: 1)

(iii) $\frac{p+q+r}{2} + \frac{a+c}{2} + \frac{b+c}{2}$ $= \frac{2a+2b+2c}{2}$ $= \frac{2(a+b+c)}{2}$ $\frac{2(a+b+c)}{2}$ $\therefore p+q+r = a+b+c$

Mostly did well.

QUESTION 13 (a)	
(i) $A(4,-3,-3)$ $B(5,2,2)$	Mostly well done
$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$	
$= \begin{pmatrix} 5 \\ 2 \\ 2 \end{pmatrix} - \begin{pmatrix} 4 \\ -3 \\ -3 \end{pmatrix}$	
= (5)	
-: Eqn of l, (say p): p = (4) + 2(5)	
* Note: there are others such as 2 = (\$\frac{5}{2}) +2(\frac{1}{5})	
(ii) $d_2: \frac{\chi - 1}{4a} = \frac{y}{-1} = \frac{2+3}{1} = \mu(say)$	Mostly well done
For l: x = 4+2 - 0 For l: x = 1+ lepe-2	except a few
y = 1 4 = 1 - 10	Dome need to
from (5) and (6) -3+52=-3+41 11 =52 (8)	learn method
from (3) and (4) -3+57 = -µ 50b (€) -3+57 = -57	
102=3	3

Then $\mu = \frac{3}{2} \int_{2}^{2} \frac{1}{1+3} \int_{2}^{2} \frac{1}{1+3} \int_{3}^{4} \frac{1}{1+3} \int_{3}^{$

Let $t = \tan \frac{\pi}{2}$ $3 - (05x - 2\sin \pi)$ Let $t = \tan \frac{\pi}{2}$ $\frac{dt}{dx} = \frac{\sec^2 \frac{\pi}{2}}{2}$ $\frac{dt}{3} - \frac{\cot^2 \frac{\pi}{2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{1 + t^2} = \frac{\cot^2 \frac{t^2}{1 + t^2}}{1 + t^2}$ $\frac{dt}{t$	QUESTION 13 (b)	7+10=1+24 -11 5	
$\frac{dx}{3-(1-t^2)-4t} \cdot 2dt$ $= \frac{1+t^2}{1+t^2} \text{with.}$ $x = \frac{\pi}{2} t = 1 \text{weath the bounds}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0 \text{constant divider}$ $x = 0 t = 0$ $x = 0$			
$= 2 \int \frac{dt}{3+2t^2-1+t^2-4t}$ $= 2 \int \frac{dt}{4t^2-4t+2}$ $= 2 \int \frac{dt}{4t^2-4t+2}$ $= 2 \int \frac{dt}{4t^2-4t+2}$ $= 2 \int \frac{dt}{4t^2-4t+2}$ $= 4 \int \frac{dt}{(1)-4\pi^2(-1)} = 4 \int \frac{dt}{(1)-4\pi^2(-1)} dt$ $= 4 \int \frac{dt}{(1)-4\pi^2(-1)} dt$		Tx = 2 dans to begin	
$= 2 \int \frac{dt}{4t^2 - 4t + 2} = \left[\frac{\tan^{-1}(2t - 1)}{2} \right] = \left[\frac{\tan^{-1}(2t$	0 1742 1742	X= = t= 1 watch the boun	
$= 2 \int \frac{dt}{4t^2 - 4t + 2} = \left[\frac{1}{t} - \frac{1}{t} - \frac{1}{t} - \frac{1}{t} - \frac{1}{t} \right] = \left[\frac{1}{t} - \frac{1}{t} - \frac{1}{t} - \frac{1}{t} \right] = \left[\frac{1}{t} - \frac{1}{t} - \frac{1}{t} - \frac{1}{t} - \frac{1}{t} \right] = \frac{1}{t} - \frac{1}{t}$	=2 dt 3+22-1+22-4t	· Constant allite	n
= 2 (dt = ten'(1) - ten'(-1)	= 2 (dt	1 2 Jo to some	
	()		
, 4 /3	0 (2t-1)2+1	= 7 7 = 17	

QUEST	TION 13 (c)	
(i)	$\frac{3^{2}+y^{2}+z^{2}=9}{x^{2}+(y-y)^{2}+z^{2}=16}$	Roally well dore.
	$(y-4)^2-y^2=7$	
	$y^{2}-8y+1b-y^{2}=7$ 8y=9	
	y=9 they intersed on The plane y=9	
(ii)	sul 3 indo 1	Mostly well done
	$\chi^2 + \left(\frac{9}{8}\right)^2 + 3^2 = 9$	except for a
	$x^2 + 81 + 3^2 = 9$	Couple of algebraic
	$x^2 + y^2 = \frac{495}{64}$	eners.
	"Cercle centre (0,9,0) radius 3555	L

RTP 12+ 12+ 32+--+ 12 <2-1 , 1>2 Generally well dre 1) Prove for n=2 e Some need to $L45 = \frac{1}{12} + \frac{1}{22} \quad R45 = 2 - \frac{1}{2}$ $= \frac{3}{2}$ watch their $= \frac{5}{4} = \frac{3}{2}$ as $\frac{5}{4} < \frac{3}{2}$ then two fr n=2Step 1 as Key 2) Assume true for n=k areless 1.e. 1+1+1+12+--+ 12 < 2-1 o Step 3 mostly (3) Prove for n= k+1 well dre 1.e /2+ 1/2+ 1/2+ (K+1)2 < 2-1/K+1 · Step 4 should be better even LHS = 1+12+ 1+ --+ Le + (K+1)2 though makes are not generally 22-1 + (k+1)2 using assumption awarded fir it = 2+ (k+) - 1 + 1 - k+1 -however Hey can < 2 - 1 as (k+1)2 - 1 + 1 <0 (k+1)2 - k + k+1 given be deducted.

L RHS

Big result is true for n=k, then it is true for Ance it is true for n=2, then it is true for n=3. If it is true for n=3, then it is true for n=4 and so on it is toe for all integer 172.

QUESTION 14 (a)

'A quadrilateral is formed by joining any four points in a plane.'

This statement is false when the four points are collinear, then a line is formed.

OR This statement is false when the three points are collinear, then with the fourth point, a triangle is formed.

QUESTION 14 (b)

(i) 'If $\forall x \in R$, $x^2 - 6x + 5$ is even, then x is odd.' i.e. $P \Rightarrow Q$

Given	Negation
$\forall x \in R$	$\exists x \in R$
is even	is not even
is odd	is not odd

 $P = \text{If } \forall x \in R, \ x^2 - 6x + 5 \text{ is even}$

Q = x is odd

Contrapositive: $\neg Q \Rightarrow \neg P$

:. Contrapositive statement: If $\exists x \in R$, x is not odd, then

 $x^2 - 6x + 5$ is not even.

OR If $\exists x \in R$, x is even, then $x^2 - 6x + 5$ is odd.

(ii) Let x = 2n, $n \in \mathbb{Z}$ (definition of even)

$$x^{2}-6x+5 = (2n)^{2}-6(2n)+5$$

$$= 4n^{2}-12n+5$$

$$= 4n^{2}-12n+4+1$$

$$= 2(2n^{2}-6n+2)+1$$

 $=2m+1, m \in \mathbb{Z}$ i.e. definition of odd.

Hence the original conjecture is proven by contraposition.

many A fai did not conclude property to how mut they industrate how is how contraposition is

4 used FreR

QUESTION 14 (c)

(i) $\arg(z+2) = \frac{\pi}{4} + \arg(z-2i)$ $\arg(z+2) - \arg(z-2i) = \frac{\pi}{4}$

 $2i) = \frac{\pi}{4}$ $0 \quad 0$ Re(z)

Many shelet dod not realized if LAPB = \$\frac{7}{2}.

A few region open circles.

(ii) Centre is at (0, 0) Radius is 2 units.

QUESTION 14 (d)

(i) $z^3 - 1 = 0$

 $z^3 = 1$ where $z = \cos \theta + i \sin \theta$

 $z^3 = \cos 3\theta + i \sin 3\theta$ by de Moirve's

Theorem

 $\cos 3\theta = 1$

$$3\theta = 2k\pi + 0, k = 0, 1, 2$$

$$\therefore \theta = \frac{2k\pi}{3}$$

When k = 0, $\theta = 0$, $\therefore z_1 = 1$

$$k = 1, \ \theta = \frac{2\pi}{3}, \ \therefore z_2 = cis \frac{2\pi}{3} = \omega$$

$$k = 2$$
, $\theta = \frac{4\pi}{3}$, $z_3 = cis \frac{4\pi}{3} = cis 2\left(\frac{2\pi}{3}\right) = \omega^2$

Hence ω^2 is a root of $z^3 - 1 = 0$.

Many approached from different rothed. Some shell did not know how to do.

(ii) ω is a complex root, hence $\omega^3 = 1$

$$\omega^{3}-1=0$$

$$(\omega-1)(1+\omega+\omega^2)=0$$
 but $\omega \neq 1$

$$\therefore 1+\omega+\omega^2=0$$

Mostly done well.

QUESTION 14 (d)

(iii)	From (i) When	k=0,	$\theta = 0$,	$\therefore z_1 =$	$=e^{i0}$
-------	--------	---------	------	----------------	--------------------	-----------

$$k=1, \ \theta=\frac{2\pi}{3}, \ \therefore z_2=e^{\frac{2\pi}{3}i}$$

$$k=2, \ \theta=\frac{4\pi}{3}, \ \therefore z_3=e^{-\frac{2\pi}{3}i}$$

Open circle at origin

$$1+\omega+\omega^2=0$$

i.e.
$$1+\omega=-\omega^2$$
 or $\omega+\omega^2=-1$ or $1+\omega^2=-\omega$

$$\therefore (1+\omega^2)^5 = (-\omega)^5$$

$$= -\omega^5$$

$$= -\omega^3 \times \omega^2 \text{ since } \omega^3 = 1$$

$$= -(1) \times \omega^2$$

$$= -\omega^2 \text{ (as required)}$$

Expanded as binomial.

-					6 2
α		SA M	ON	15	(0)
	1 1			1.7	141

(i) given $a^2+b^2 > 2ab$ Hen $x^2+y^2 > 2xy - 0$ $x^2+z^2 > 2xz - 0$ $y^2+z^2 > 2yz - 0$ So $0+0+3$ $2x^2+2y^2+2z^2 > 2xy + 2xz + 2yz ()$ So $x^2+y^2+z^2 > 2y+xz + yz > 0$ (ii) given $x+y+z=1$	
$x^{2}+z^{2} > 2xz - 0$ $y^{2}+z^{2} > 2yz - 3$ $50 (1+2)+(3) 2x^{2}+2y^{2}+2z^{2} > 2xy + 2xz + 2yz (1)$ $50 x^{2}+y^{2}+z^{2} > 2y+xz + yz > x$	lls well done
$x^{2}+z^{2} > 2xz - 0$ $y^{2}+z^{2} > 2yz - 3$ $50 (1+2)+(3) 2x^{2}+2y^{2}+2z^{2} > 2xy + 2xz + 2yz (1)$ $50 x^{2}+y^{2}+z^{2} > 2y+xz + yz > x$	0
50 (1+1) 2x2+2y2+2z2 > 2xy +2xz+2yz (1) 50 x2+y2+z2> 2y+xz+yz **	
10 x2+y2+ 32 > 2y+x3+y3 *	
lin given $2l+4+2=$	
(") 0 1 0 2 2 2 2	00
(") (21+y+z)2=1=2+42+22+2 (21y+22+43) Generally well d	ally well done
$-\frac{1}{2}x^2+y^2+z^2=1-2(2y+xz+yz)$	3
1-d(xy+23+43) > xy + x3 + y2 (from(i))	
1 > 3(xy+xz+yz)	

QUESTION 15 (b)

QUEST		
(i)	given $g = \cos 0 + i \sin \alpha$ then $g^n = \cos n\alpha + i \sin n\alpha$ $g^{-n} = \cos (-n\alpha) + i \sin (-n\alpha)$ $= \cos n\alpha - i \sin n\alpha$	generally well done
	$-\frac{1}{3}n + \frac{1}{3}n = 2\cos n\alpha$	
(ii)	$(3+\frac{1}{3})^{4} = 3^{4} + 43^{2} + 6 + \frac{4}{3^{2}} + \frac{1}{3^{4}}$ $= (3^{4} + \frac{1}{3^{4}}) + 4(3^{2} + \frac{1}{3^{2}}) + 6$	generally well done
	= 2 cos 4a + 4(2 cos 2 ce) + 6 = 2 cos 4 cos 2 co + 6	
	$60(3+\frac{1}{3})^4 = (2\cos 6)^4$ = $16\cos^4 6$	
(m)	$\frac{.16\cos^{4}\alpha = 2\cos^{4}\alpha + 8\cos^{2}\alpha + 6}{8}$ $\cos^{4}\alpha = \cos^{4}\alpha + \cos^{2}\alpha + \frac{3}{8}$	
(m)	f cos40 da = f cos40 + cos200 + 3 da	generally well dre
	= SIN40 + SIN20 + 300 + C	

let A = [3] and P ke a pt. on r = [0.7+2[-17

Day P= [1+27]

Now AP = [1+277-[3]

 $= \begin{bmatrix} -2+2 \\ -1-2 \end{bmatrix}$

/AP/ is minimum when AP. (2)=0 (right angles)

 $\begin{bmatrix} -2+2\sqrt{7} & 2 \\ -1-2 & -1 \end{bmatrix} = 0 = 3 - 4+42+1+2-1+2=0$ $\begin{bmatrix} -1-2 & -1-2 \\ -1+2 & -1 \end{bmatrix} = 0 = 3 - 4+42+1+2-1+2=0$ 2 = 2/3

then $\rho = \begin{bmatrix} 1+2.2/3 \\ -2/3 \\ 1-2/2 \end{bmatrix} = \begin{bmatrix} 7/3 \\ -2/3 \\ 5/3 \end{bmatrix}$

QUESTION 15 (d)

: min distance is

 $=\sqrt{\left(-\frac{2}{5}\right)^2+\left(-\frac{5}{3}\right)^2+\left(-\frac{1}{3}\right)^2}$ = \square 30 UN 175

(d)

0,=2, a2=3 & an = 3an-,-2an-2 for n7,3

Prove Q = 2n-1+1

for n=1 $\alpha_1 = 2^{l-1} + 1 = l+1 = 2$ n=2 $\alpha_2 = 2^{2-l} + 1 = 2 + l = 3$

Assume true for n=1 $a_1=2$ $a_2=3$ $a_3=2^2+1=5$

n=k-1 $a_{k-1}=2^{k-2}+1$ n=k $a_k=2^{k-1}+1$

Prove for n = k+1, $a_{k+1} = a^{(k+1)-1} + 1$ $= a^{k+1}$

< A lot of students did not do n=1 and n=2 : an = 2 +1 is true for n=1,2 | The value of an is dependent on 2 values proceeding it

loonly done quartien

ded this correctle

About 5 students

- Host ded this correctly A few students did not show the sequence in the

Sver page

2023 Trial HSC Mathematics Extension 2

ak+1 = 3ak - 2ak-1 by recurrance relation = $3(a^{k-1}+1)-2(a^{k-2}+1)$ by assumption $=3.2^{k-1}+3-2.2^{k-2}-2$ $=3.2^{k-1}-2.2^{k-2}+1$ Host did this step well. = 3.2k-1 - 2k-1+1 $= 2.2 \cdot +1$ = 2 k + 1 which is true of n= k+1 if the f n=1<n≤k, k>1 where k is on integer Since ax is true for n=1, n=2 it is true for n=3 Since ax is true for n=2, n=3 it is true for n=4 and so on - an = 2"-1 13 true for all 171 lot better nearly

QUESTION 16 (a)

$$\int_{0}^{\frac{\pi}{4}} \sec^{3}x \, dx = \int_{0}^{\frac{\pi}{4}} \sec^{2}x \sec x \, dx$$

$$= [uv]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} u'v \, dx \text{ where } u = \sec x$$

$$u' = \sec x \tan x$$

$$v' = \sec^{2}x$$

$$v = \tan x$$

$$= [\sec x \tan x]_{0}^{\frac{\pi}{4}} - \int_{0}^{\frac{\pi}{4}} \sec x (\sec^{2}x - 1) \, dx$$

$$= [\sqrt{2}(1)] - \int_{0}^{\frac{\pi}{4}} \sec^{3}x - \sec x \, dx$$

$$Let \, I = \int_{0}^{\frac{\pi}{4}} \sec^{3}x \, dx$$

$$I = \sqrt{2} - \int_{0}^{\frac{\pi}{4}} \sec^{3}x \, dx + \int_{0}^{\frac{\pi}{4}} \sec x \, dx$$

$$2I = \sqrt{2} + \int_{0}^{\frac{\pi}{4}} \sec x \times \frac{\sec x + \tan x}{\sec x + \tan x} \, dx$$

$$2I = \sqrt{2} + \int_{0}^{\frac{\pi}{4}} \frac{\sec^{2}x + \sec x \tan x}{\sec x + \tan x} \, dx$$

$$2I = \sqrt{2} + [\ln|\sec x + \tan x|]_{0}^{\frac{\pi}{4}}$$

$$2I = \sqrt{2} + [\ln|\sec x + \tan x|]_{0}^{\frac{\pi}{4}}$$

$$2I = \sqrt{2} + [\ln|\sec x + \tan x|]_{0}^{\frac{\pi}{4}}$$

$$2I = \sqrt{2} + [\ln|\sec x + \tan x|]_{0}^{\frac{\pi}{4}}$$

$$2I = \sqrt{2} + [\ln|(\sqrt{2} + 1) - \ln(\sec 0 + \tan 0)]$$

$$2I = \sqrt{2} + [\ln(\sqrt{2} + 1) - \ln 1]$$

$$2I = \sqrt{2} + \ln(\sqrt{2} + 1)$$

$$\therefore I = \frac{\sqrt{2}}{2} + \frac{1}{2} \ln(\sqrt{2} + 1)$$

Mostly done well.

QUEST	TION 16 (b)	
(i)	$l_1: r = (11i + 2j + 17k) + \lambda(-2i + j - pk)$	
	$= \begin{bmatrix} 11 \\ 2 \\ 17 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ -p \end{bmatrix} \text{ with direction vector } \begin{bmatrix} -2 \\ 1 \\ -p \end{bmatrix};$	
	$l_2: r = (-5i + 11j + qk) + \mu(-3i + 2j + 2k)$	
	$= \begin{bmatrix} -5\\11\\q \end{bmatrix} + \mu \begin{bmatrix} -3\\2\\2 \end{bmatrix} \text{ with direction vector } \begin{bmatrix} -3\\2\\2 \end{bmatrix};$	
	For $l_1 \perp l_2$, $\begin{bmatrix} -2\\1\\p \end{bmatrix} \bullet \begin{bmatrix} -3\\2\\2 \end{bmatrix} = 0$	Many did not ohr Pat $\begin{bmatrix} -2 \\ -p \end{bmatrix} \cdot \begin{bmatrix} -2^2 \\ 2 \end{bmatrix} = 0.$
	(-2)(-3)+(1)(2) + 2p = 0	
	6+2+2p=0 $8+2p=0$	
	2p = -8	
	$\therefore p = -44$	
(ii)	$r_1 = \begin{bmatrix} 11 \\ 2 \\ 17 \end{bmatrix} + \lambda \begin{bmatrix} -2 \\ 1 \\ -4 \end{bmatrix}$ and $r_2 = \begin{bmatrix} -5 \\ 11 \\ q \end{bmatrix} + \mu \begin{bmatrix} -3 \\ 2 \\ 2 \end{bmatrix}$	Mostly well done.
	Equating the like components:	
	$11 - 2\lambda = -5 - 3\mu - $	
	$2 + \lambda = 11 + 2\mu$ — ②	
	$17 - 4\lambda = q + 2\mu \Im$	
	From ② $\lambda = 9 + 2\mu - 2$ "	
	Sub ②' into① $11-2(9+2\mu) = -5-3\mu$	
	$11 - 18 - 4\mu = -5 - 3\mu$	
	$\therefore \mu = -2 - \oplus$	

(ii)	Sub ⊕ into ②'	$\lambda = 9 + 2(-2)$	
		∴ $\lambda = 5$ — ⑤	
	Sub @ and © into @	17 - 4(5) = q + 2(-2)	
		-3 = q - 4	
		$\therefore q = 1$	
Citix			
(iii)		$r_1 = \begin{bmatrix} 11 \\ 2 \\ 17 \end{bmatrix} + 5 \begin{bmatrix} -2 \\ 1 \\ -4 \end{bmatrix}$	Did not answer as a pour! Meny di not amener per as a point!
		$r_{1} = \begin{bmatrix} 11 - 10 \\ 2 + 5 \\ 17 - 20 \end{bmatrix}$	a point.
		$r_1 = \begin{bmatrix} 1 \\ 7 \\ -3 \end{bmatrix}$	
	:. The point of interse	ection is (1, 7, -3)	
	Checking: $r_2 = \begin{bmatrix} -5 \\ 11 \\ 1 \end{bmatrix}$	$-2\begin{bmatrix} -3\\2\\2\end{bmatrix}$	

$$r_2 = \begin{bmatrix} -5 + 6 \\ 11 - 4 \end{bmatrix}$$

$$r_2 = \begin{bmatrix} 1 \\ 7 \\ -3 \end{bmatrix}$$

 $26 - \frac{1}{13} = \frac{167}{338}$ $= \frac{33!}{3}$

QUESTION 16 (c)

(i)

$$\int_0^{\frac{1}{2}} \frac{1}{\sqrt{1-x^2}} dx = \left[\sin^{-1} x \right]_0^{\frac{1}{2}}$$

$$= \sin^{-1} \frac{1}{2} - \sin^{-1} 0$$

$$= \frac{\pi}{6} - 0$$

$$= \frac{\pi}{6}$$

all corect.

(ii)

For $n \ge 2$, since $0 \le x \le \frac{1}{2}$, $0 \le x^n \le \left(\frac{1}{2}\right)^n$ and $0 \le x^2 \le \left(\frac{1}{2}\right)^2$ $0 \le \left(\frac{1}{2}\right)^n \le \left(\frac{1}{2}\right)^2$ $\therefore 0 \le x^n \le x^2$

Many mused the

(iii)

For $n \ge 2$ and $0 \le x \le \frac{1}{2}$, $0 \le x^n \le x^2$ $1 \ge 1 - x^n \ge 1 - x^2$ $1 \ge \sqrt{1 - x^n} \ge \sqrt{1 - x^2}$ $1 \le \frac{1}{\sqrt{1 - x^n}} \le \frac{1}{\sqrt{1 - x^2}}$ $\int_0^{\frac{1}{2}} 1 \, dx \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^n}} \, dx \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, dx$ $[x]_0^{\frac{1}{2}} \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^n}} \, dx \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, dx$ $\frac{1}{2} - 0 \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^n}} \, dx \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^2}} \, dx$ $\therefore \frac{1}{2} \le \int_0^{\frac{1}{2}} \frac{1}{\sqrt{1 - x^n}} \, dx \le \frac{\pi}{6}$

Many old at est from $0 \le x^n \le x^n$ hence did not explain the inaquality